Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neth Heart J ; 31(7-8): 300-307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37488328

RESUMO

INTRODUCTION: The MYH7 c.5135G > A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database. We aimed to delineate its associated phenotype and evaluate a potential founder effect. METHODS: We retrospectively collected clinical and genetic data of 22 probands and 74 family members from an international cohort. RESULTS: In total, 53 individuals carried the MYH7 p.(Arg1712Gln) variant, of whom 38 (72%) were diagnosed with hypertrophic cardiomyopathy (HCM). Mean age at HCM diagnosis was 48.8 years (standard deviation: 18.1; range: 8-74). The clinical presentation ranged from asymptomatic HCM to arrhythmias (atrial fibrillation and malignant ventricular arrhythmias). Aborted sudden cardiac death (SCD) leading to the diagnosis of HCM occurred in one proband at the age of 68 years, and a family history of SCD was reported by 39% (5/13) probands. Neither heart failure deaths nor heart transplants were reported. Women had a generally later-onset disease, with 14% of female carriers diagnosed with HCM at age 50 years compared with 54% of male carriers. In both sexes, the disease was fully penetrant by age 75 years. Haplotypes were reconstructed for 35 patients and showed a founder effect in a subset of patients. CONCLUSION: MYH7 p.(Arg1712Gln) is a pathogenic founder variant with a consistent HCM phenotype that may present with delayed penetrance. This suggested that clinical follow-up should be pursued after the seventh decade in healthy carriers and that longer intervals between screening may be justified in healthy women < 30 years.

2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835444

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.


Assuntos
Cardiomiopatia Hipertrófica , Efeito Fundador , Miosinas , Humanos , Biomarcadores , Cardiomiopatia Hipertrófica/genética , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Mutação , Fenótipo , Volume Sistólico , Função Ventricular Esquerda , Miosinas/genética , Heterozigoto , Masculino
3.
Gene ; 851: 146984, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36270459

RESUMO

BACKGROUND: Splice prediction algorithms currently used in routine DNA diagnostics have limited sensitivity and specificity, therefore many potential splice variants are classified as variants of uncertain significance (VUSs). However, functional assessment of VUSs to test splicing is labour-intensive and time-consuming. We developed a decision tree to prioritise potential splice variants for functional studies and functionally verified the outcome of the decision tree. MATERIALS AND METHODS: We built the decision tree, SEPT-GD, by setting thresholds for the splice prediction programs implemented in Alamut. A set of 343 variants with known effects on splicing was used as control for sensitivity and specificity. We tested SEPT-GD using variants from a Dutch cardiomyopathy cohort of 2002 patients that were previously classified as VUS and predicted to have a splice effect according to diagnostic rules. We then selected 12 VUSs ranked by SEPT-GD to functionally verify the predicted effect on splicing using a minigene assay: 10 variants predicted to have a strong effect and 2 with a weak effect. RT-PCR was performed for nine variants. Variant classification was re-evaluated based on the functional test outcome. RESULTS: Compared to similar individually tested algorithms, SEPT-GD shows higher sensitivity (91 %) and comparable specificity (88 %) for both consensus (dinucleotides at the start and end of the intron, GT at the 5' end and AG at the 3' end) and non-consensus splice-site variants (excluding middle of exon variants). Using clinical diagnostic criteria, 1295 unique variants in our cardiomyopathy cohort had originally been classified as VUSs, with 57 predicted by Alamut to have an effect on splicing. Using SEPT-GD, we prioritised 31 variants in 40 patients. In the minigene assay, all 12 variants showed results concordant with SEPT-GD predictions. RT-PCR confirmed the minigene results for two variants, TMEM43 c.1000 + 5G > T and TTN c.25922-6 T > G. Based on all outcomes, the SGCD c.4-1G > A and CSRP3 c.282-5_285del variants were reclassified as likely pathogenic. CONCLUSION: SEPT-GD outperforms the tools commonly used for RNA splicing prediction and improves prioritisation of variants in cardiomyopathy genes for functional splicing analysis in a diagnostic setting.


Assuntos
Cardiomiopatias , Sítios de Splice de RNA , Humanos , Sítios de Splice de RNA/genética , Árvores de Decisões , Variação Genética , Splicing de RNA , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética
4.
Eur J Paediatr Neurol ; 41: 91-98, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36410285

RESUMO

Vici syndrome (OMIM 242840) is a very rare autosomal recessive multisystem disorder first described in 1988. In 2013, bi-allelic loss-of-function mutations in EPG5 were reported to cause Vici syndrome. Five principal diagnostic features of Vici syndrome have been proposed: agenesis of the corpus callosum, cataracts, cardiomyopathy, hypopigmentation, and combined immunodeficiency. We identified 15 patients carrying a homozygous founder missense variant in EPG5 who all exhibit a less severe clinical phenotype than classic Vici syndrome. All 15 show typical brain abnormalities on MRI. The homozygous founder variant in EPG5 they carry results in a shorter in-frame transcript and truncated, but likely still residual, EPG5 protein. We speculate that the residual EPG5 protein explains their attenuated phenotype, which is consistent with two previous observations that low expression of EPG5 can lead to an attenuated Vici syndrome phenotype. We propose renaming this condition EPG5-related neurodevelopmental disorder to emphasize the clinical variability of patients with bi-allelic mutations in EPG5.


Assuntos
Catarata , Humanos , Catarata/genética , Fenótipo , Homozigoto , Corpo Caloso , Proteínas Relacionadas à Autofagia , Proteínas de Transporte Vesicular/genética
5.
Int J Cardiol ; 332: 99-104, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662488

RESUMO

BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible.


Assuntos
Cardiomiopatias , Sequenciamento de Nucleotídeos em Larga Escala , Cardiomiopatias/diagnóstico , Cardiomiopatias/epidemiologia , Cardiomiopatias/genética , Variações do Número de Cópias de DNA , Testes Genéticos , Humanos
6.
Int J Cardiol ; 323: 251-258, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882290

RESUMO

Background - Variants within the alpha-tropomyosin gene (TPM1) cause dominantly inherited cardiomyopathies, including dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathy. Here we investigated whether TPM1 variants observed in DCM and HCM patients affect cardiomyocyte physiology differently. Methods - We identified a large family with DCM carrying a recently identified TPM1 gene variant (T201M) and a child with RCM with compound heterozygote TPM1 variants (E62Q and M281T) whose family members carrying single variants show diastolic dysfunction and HCM. The effects of TPM1 variants (T201M, E62Q or M281T) and of a plasmid containing both the E62Q and M281T variants on single-cell Ca2+ transients (CaT) in HL-1 cardiomyocytes were studied. To define toxic threshold levels, we performed dose-dependent transfection of TPM1 variants. In addition, cardiomyocyte structure was studied in human cardiac biopsies with TPM1 variants. Results - Overexpression of TPM1 variants led to time-dependent progressive deterioration of CaT, with the smallest effect seen for E62Q and larger and similar effects seen for the T201M and M281T variants. Overexpression of E62Q/M281T did not exacerbate the effects seen with overexpression of a single TPM1 variant. T201M (DCM) replaced endogenous tropomyosin dose-dependently, while M281T (HCM) did not. Human cardiac biopsies with TPM1 variants revealed loss of sarcomeric structures. Conclusion - All TPM1 variants result in reduced cardiomyocyte CaT amplitudes and loss of sarcomeric structures. These effects may underlie pathophysiology of different cardiomyopathy phenotypes.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Tropomiosina/genética , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Humanos , Mutação , Miócitos Cardíacos , Fenótipo
7.
J Pers Med ; 10(4)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371313

RESUMO

Pharmacogenomics (PGx) can provide optimized treatment to individual patients while potentially reducing healthcare costs. However, widespread implementation remains absent. We performed a pilot study of PGx screening in Dutch outpatient hospital care to identify the barriers and facilitators to implementation experienced by patients (n = 165), pharmacists (n = 58) and physicians (n = 21). Our results indeed suggest that the current practical experience of healthcare practitioners with PGx is limited, that proper education is necessary, that patients want to know the exact implications of the results, that healthcare practitioners heavily rely on their computer systems, that healthcare practitioners encounter practical problems in the systems used, and a new barrier was identified, namely that there is an unclear allocation of responsibilities between healthcare practitioners about who should discuss PGx with patients and apply PGx results in healthcare. We observed a positive attitude toward PGx among all the stakeholders in our study, and among patients, this was independent of the occurrence of drug-gene interactions during their treatment. Facilitators included the availability of and adherence to Dutch Pharmacogenetics Working Group guidelines. While clinical decision support (CDS) is available and valued in our medical center, the lack of availability of CDS may be an important barrier within Dutch healthcare in general.

9.
Am Heart J ; 225: 108-119, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32480058

RESUMO

INTRODUCTION: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. METHODS AND RESULTS: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10-5; U.S. cohort, P = 2.2×10-13). CONCLUSION: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Heterozigoto , Mutação com Perda de Função , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Proteínas Quinases/genética , Anormalidades Múltiplas/genética , Adulto , Idade de Início , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Ecocardiografia , Eletrocardiografia , Humanos , Lactente , Fenótipo
10.
J Med Genet ; 57(1): 23-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494578

RESUMO

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação de Sentido Incorreto , Miocárdio/patologia , Superóxido Dismutase/genética , Sequência de Aminoácidos , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/metabolismo , Sequência Conservada , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Linhagem , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
11.
Sci Rep ; 9(1): 4093, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858397

RESUMO

Recent advancements in next generation sequencing (NGS) technology have led to the identification of the giant sarcomere gene, titin (TTN), as a major human disease gene. Truncating variants of TTN (TTNtv) especially in the A-band region account for 20% of dilated cardiomyopathy (DCM) cases. Much attention has been focused on assessment and interpretation of TTNtv in human disease; however, missense and non-frameshifting insertions/deletions (NFS-INDELs) are difficult to assess and interpret in clinical diagnostic workflow. Targeted sequencing covering all exons of TTN was performed on a cohort of 530 primary DCM patients from three cardiogenetic centres across Europe. Using stringent bioinformatic filtering, twenty-nine and two rare TTN missense and NFS-INDELs variants predicted deleterious were identified in 6.98% and 0.38% of DCM patients, respectively. However, when compared with those identified in the largest available reference population database, no significant enrichment of such variants was identified in DCM patients. Moreover, DCM patients and reference individuals had comparable frequencies of splice-region missense variants with predicted splicing alteration. DCM patients and reference populations had comparable frequencies of rare predicted deleterious TTN missense variants including splice-region missense variants suggesting that these variants are not independently causative for DCM. Hence, these variants should be classified as likely benign in the clinical diagnostic workflow, although a modifier effect cannot be excluded at this stage.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Mutação INDEL/genética , Mutação de Sentido Incorreto/genética , Estudos de Coortes , Simulação por Computador , Feminino , Frequência do Gene/genética , Heterozigoto , Humanos , Masculino , Splicing de RNA/genética
12.
PLoS One ; 13(8): e0203078, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161220

RESUMO

AIMS: Likely pathogenic/pathogenic variants in genes encoding desmosomal proteins play an important role in the pathophysiology of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, for a substantial proportion of ARVC patients, the genetic substrate remains unknown. We hypothesized that plectin, a cytolinker protein encoded by the PLEC gene, could play a role in ARVC because it has been proposed to link the desmosomal protein desmoplakin to the cytoskeleton and therefore has a potential function in the desmosomal structure. METHODS: We screened PLEC in 359 ARVC patients and compared the frequency of rare coding PLEC variants (minor allele frequency [MAF] <0.001) between patients and controls. To assess the frequency of rare variants in the control population, we evaluated the rare coding variants (MAF <0.001) found in the European cohort of the Exome Aggregation Database. We further evaluated plectin localization by immunofluorescence in a subset of patients with and without a PLEC variant. RESULTS: Forty ARVC patients carried one or more rare PLEC variants (11%, 40/359). However, rare variants also seem to occur frequently in the control population (18%, 4754/26197 individuals). Nor did we find a difference in the prevalence of rare PLEC variants in ARVC patients with or without a desmosomal likely pathogenic/pathogenic variant (14% versus 8%, respectively). However, immunofluorescence analysis did show decreased plectin junctional localization in myocardial tissue from 5 ARVC patients with PLEC variants. CONCLUSIONS: Although PLEC has been hypothesized as a promising candidate gene for ARVC, our current study did not show an enrichment of rare PLEC variants in ARVC patients compared to controls and therefore does not support a major role for PLEC in this disorder. Although rare PLEC variants were associated with abnormal localization in cardiac tissue, the confluence of data does not support a role for plectin abnormalities in ARVC development.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Plectina/genética , Plectina/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Estudos de Coortes , Frequência do Gene , Variação Genética , Heterozigoto , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , População Branca/genética
13.
Genet Med ; 20(11): 1374-1386, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517769

RESUMO

PURPOSE: We evaluated the diagnostic yield in pediatric dilated cardiomyopathy (DCM) of combining exome sequencing (ES)-based targeted analysis and genome-wide copy-number variation (CNV) analysis. Based on our findings, we retrospectively designed an effective approach for genetic testing in pediatric DCM. METHODS: We identified 95 patients (in 85 families) with pediatric onset of DCM. We initially excluded 13 of these families because they already had a genetic diagnosis, leaving a total of 31 probands for single-nucleotide polymorphism (SNP) array and trio-ES. We used Human Phenotype Ontology (HPO)-based filtering for our data analysis. RESULTS: We reached a genetic diagnosis in 15/31 (48.4%) families. ES yielded a diagnosis in 13 probands (13/15; 86.7%), with most variants being found in genes encoding structural cardiomyocyte components. Two large deletions were identified using SNP array. If we had included the 13 excluded families, our estimated yield would have been 54%. CONCLUSION: We propose a standardized, stepwise analysis of (i) well-known cardiomyopathy genes, (ii) CNVs, (iii) all genes assigned to HPO cardiomyopathy, and (iv) if appropriate, genes assigned to other HPO terms. This diagnostic approach yields the highest increase at each subsequent step and reduces analytic effort, cost, the number of variants of unknown clinical significance, and the chance of incidental findings.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Variações do Número de Cópias de DNA/genética , Testes Genéticos/métodos , Adolescente , Cardiomiopatia Dilatada/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Deleção de Sequência/genética , Sequenciamento do Exoma
15.
J Am Coll Cardiol ; 67(5): 515-25, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26846950

RESUMO

BACKGROUND: Cardiomyopathies are usually inherited and predominantly affect adults, but they can also present in childhood. Although our understanding of the molecular basis of pediatric cardiomyopathy has improved, the underlying mechanism remains elusive in a substantial proportion of cases. OBJECTIVES: This study aimed to identify new genes involved in pediatric cardiomyopathy. METHODS: The authors performed homozygosity mapping and whole-exome sequencing in 2 consanguineous families with idiopathic pediatric cardiomyopathy. Sixty unrelated patients with pediatric cardiomyopathy were subsequently screened for mutations in a candidate gene. First-degree relatives were submitted to cardiac screening and cascade genetic testing. Myocardial samples from 2 patients were processed for histological and immunohistochemical studies. RESULTS: We identified 5 patients from 3 unrelated families with pediatric cardiomyopathy caused by homozygous truncating mutations in ALPK3, a gene encoding a nuclear kinase that plays an essential role in early differentiation of cardiomyocytes. All patients with biallelic mutations presented with severe hypertrophic and/or dilated cardiomyopathy in utero, at birth, or in early childhood. Three patients died from heart failure within the first week of life. Moreover, 2 of 10 (20%) heterozygous family members showed hypertrophic cardiomyopathy with an atypical distribution of hypertrophy. Deficiency of alpha-kinase 3 has previously been associated with features of both hypertrophic and dilated cardiomyopathy in mice. Consistent with studies in knockout mice, we provide microscopic evidence for intercalated disc remodeling. CONCLUSIONS: Biallelic truncating mutations in the newly identified gene ALPK3 give rise to severe, early-onset cardiomyopathy in humans. Our findings highlight the importance of transcription factor pathways in the molecular mechanisms underlying human cardiomyopathies.


Assuntos
Cardiomiopatias , Diferenciação Celular/genética , Proteínas Musculares/genética , Miócitos Cardíacos/fisiologia , Idade de Início , Animais , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Ecocardiografia/métodos , Exoma/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Camundongos , Mutação , Prognóstico
18.
Hum Mutat ; 34(7): 1035-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23568810

RESUMO

Mutation detection through exome sequencing allows simultaneous analysis of all coding sequences of genes. However, it cannot yet replace Sanger sequencing (SS) in diagnostics because of incomplete representation and coverage of exons leading to missing clinically relevant mutations. Targeted next-generation sequencing (NGS), in which a selected fraction of genes is sequenced, may circumvent these shortcomings. We aimed to determine whether the sensitivity and specificity of targeted NGS is equal to those of SS. We constructed a targeted enrichment kit that includes 48 genes associated with hereditary cardiomyopathies. In total, 84 individuals with cardiomyopathies were sequenced using 151 bp paired-end reads on an Illumina MiSeq sequencer. The reproducibility was tested by repeating the entire procedure for five patients. The coverage of ≥30 reads per nucleotide, our major quality criterion, was 99% and in total ∼21,000 variants were identified. Confirmation with SS was performed for 168 variants (155 substitutions, 13 indels). All were confirmed, including a deletion of 18 bp and an insertion of 6 bp. The reproducibility was nearly 100%. We demonstrate that targeted NGS of a disease-specific subset of genes is equal to the quality of SS and it can therefore be reliably implemented as a stand-alone diagnostic test.


Assuntos
Cardiomiopatias , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Éxons , Humanos , Mutação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Heart Rhythm ; 6(11): 1574-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19879535

RESUMO

BACKGROUND: Desmin-related myopathy is a clinically heterogenous group of disorders encompassing myopathies, cardiomyopathies, conduction disease, and combinations of these disorders. Mutations in the gene encoding desmin (DES), a major intermediate filament protein, can underlie this phenotype. OBJECTIVE: The purpose of this study was to investigate the clinical and pathologic characteristics of 27 patients from five families with an identical mutation in the head domain region (p.S13F) of desmin. METHODS/RESULTS: All 27 carriers or obligate carriers of a p.S13F DES founder mutation demonstrated a fully penetrant yet variable phenotype. All patients demonstrated cardiac involvement characterized by high-grade AV block at young ages and important right ventricular (RV) involvement. RV predominance was demonstrated by the presence of right bundle branch block in 10 patients (sometimes as a first manifestation) and by RV heart failure in 6 patients, including 2 patients who fulfilled the diagnostic criteria for arrhythmogenic RV cardiomyopathy. Because of this clinical overlap with desmosome cardiomyopathies, we also studied the organization of the intercalated disks, particularly the distribution of desmosomal proteins. Normal amounts of the major desmosomal proteins were found, but the intercalated disks were more convoluted and elongated and had a zigzag appearance. CONCLUSION: In this largest series to date of individuals with a single head domain DES mutation, patients show a variable yet predominantly cardiologic phenotype characterized by conduction disease at an early age and RV involvement including right bundle branch block and/or RV tachycardias and arrhythmogenic RV cardiomyopathy phenocopies. A localized effect of desmin on the structure of the cardiac intercalated disks might contribute to disease pathogenesis.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Desmina/genética , Linhagem , Fenótipo , Adolescente , Adulto , Displasia Arritmogênica Ventricular Direita/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Índice de Gravidade de Doença
20.
J Am Coll Cardiol ; 49(25): 2430-9, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17599607

RESUMO

OBJECTIVES: The goal of this study was to identify the underlying gene defect in a family with inherited myocardial fibrosis. BACKGROUND: A large family with an autosomal dominantly inherited form of myocardial fibrosis with a highly malignant clinical outcome has been investigated. Because myocardial fibrosis preceded the clinical and echocardiographic signs, we consider the disease to be a hereditary form of cardiac fibrosis. METHODS: Twenty-five family members were clinically evaluated, and 5 unaffected and 8 affected family members were included in a genome-wide linkage study. RESULTS: The highest logarithm of the odds (LOD) score (LOD = 2.6) was found in the region of the lamin AC (LMNA) gene. The LMNA mutation analysis, both by denaturing gradient gel electrophoresis and sequencing, failed to show a mutation. Subsequent Southern blotting, complementary deoxyribonucleic acid sequencing, and multiplex ligation-dependent probe amplification analysis, however, revealed a deletion of the start codon-containing exon and an adjacent noncoding exon. In vitro studies demonstrated that the deletion results in the formation of nuclear aggregates of lamin, suggesting that the mutant allele is being transcribed. CONCLUSIONS: This novel LMNA deletion causes a distinct, highly malignant cardiomyopathy with early-onset primary cardiac fibrosis likely due to an effect of the shortened mutant protein, which secondarily leads to arrhythmias and end-stage cardiac failure.


Assuntos
Fibrose Endomiocárdica/epidemiologia , Fibrose Endomiocárdica/genética , Deleção de Genes , Predisposição Genética para Doença , Lamina Tipo A/genética , Mutação , Adulto , Distribuição por Idade , Biópsia por Agulha , Southern Blotting , Eletrocardiografia , Fibrose Endomiocárdica/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Incidência , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Distribuição por Sexo , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA